
Clustering Software Systems to Identify
Subsystem Structures

Understanding the Structure of Programs is
Difficult

• Developers create sophisticated applications
that are complex and involve a large number
of interconnected components.

• Result: Program understanding is difficult

• Goal: Use automated techniques to help
developers understand the structure of
software systems.

Common Problems

• Creating a good mental model of the structure of a
complex system.

• Keeping a mental model consistent with changes that
occur as the system evolves.

• These problems are exacerbated by:

– non-existent or inconsistent design documentation

– high rate of turnover among IT professionals

• Assumption: Understanding the structure of a
systems software is valuable for maintainers.

Solutions

• Automatic: Use software clustering
techniques to decompose the structure of
software systems into meaningful
subsystems.

– Subsystems help developers navigate through
the numerous software components and their
interconnections.

• Manual: Use notations such as UML to
specify the software structure.

A Software Clustering Primer

• Directed graphs are commonly used to represent
the structure of software.

• Assume that this graph consists of a finite set of
components (nodes):

– classes, modules, files, packages, etc.

• and relationships (edges) between components:

– inherit, import, include, call, instantiate, etc.

• Problem: How do we partition the nodes of the
graph into clusters (subsystems)?

Software Clustering Challenges

• There are many ways to partition a graph into
clusters.

• How do we create efficient algorithms to find
partitions of the graph that are representative
of a system’s structure?

• How do we distinguish between “good”
partitions, and “bad” partitions?

How Hard is this Problem?

If every partition of the graph is considered, the number

of partitions that will need to be investigated is:










 otherwiseSS

nk or 1k if
S

knkn

kn

,11,1

,

1

The above recurrence equation grows exponentially with

respect to the number of nodes (n) in the graph

(each partition 1kn clusters).

Sn,k for some values of n:

1=1; 5=52; 10=115,975; 15=1,382,958,545;

20=51,724,158,235,372

Some Solutions

• Enumerating every possible partition of the
software structure graph is not practical.

• Heuristics can be used to reduce the number
of partitions:
– Searching algorithms
– Knowledge about the source code

• Names (files, directories, method/procedure)
• Designer input, design documentation

– Remove entities that provide little structural value
• libraries

• Result are sub-optimal, but are often
adequate.

Why is
Software Clustering Useful?

• Helps new developers create a mental model
of the software structure.

• Especially useful in the absence of experts or
accurate design documentation.

• Helps developers understand the structure of
legacy software.

• Enables developers to compare the
documented structure with the automatically
created (actual) structure.

Example: Clustering Simplifies Program
Structure Understanding

boxParserClass

error stackOfAnyWithTop boxScannerClass

Fonts Globals Mathlib EdgeClass ColorTable stackOfAny Lexer hashedBoxes

Event

GenerateProlog NodeOfAny hashGlobals

main

boxClass

Main

Event

error

boxParserClass

Globals

Generate
Prolog

stackOfAnyWithTopboxClass

colorTable FontsedgaClass MathLib

stackOfAny

NodeOfAny

hashedBoxes

hashGlobals

boxScanner
Class

Lexer

Original System:

Clustered System:

Modern Relevance of
Software Clustering

• Clustering has been studied for many years in
the fields of mathematics, science and
engineering.

• Clustering research in software engineering
increased because of Y2K and the ‘webifying’
of legacy systems.

• New clustering approaches have been
developed, and classical clustering techniques
have been modified to work with software
structures.

Creating Clusters at Design Time

• Parnas (1972) – Information Hiding
– Hide program “secrets” behind interfaces

– A manual form of clustering

• Object Oriented Design (Booch, 1994)
– Objects group (cluster) related data and

operations that act upon the data.

– Booch suggests principles that are commonly
used in clustering research:
• Abstraction

• Encapsulation

• Hierarchies & Modularity

Classification of
Software Clustering Research

• Clustering Procedures/Functions into Modules
– Hutchens & Basili, Schwanke, Lindig & Snelting, Montes de

Oca & Carver

• Clustering Modules/Classes into Subsystems
– Müller et. al., Mancoridis, Mitchell et. al., Anqetil, Fourrier

& Lethbridge, Choi & Scacchi

• Measuring Differences between Clustered Systems,
Incremental Maintenance &
Metrics/Measurements
– Murphy, Tzerpos & Holt, Mitchell & Mancoridis, Anquetil,

Fourrier & Lethbridge

Clustering Techniques

• There are many different clustering
techniques, but clustering techniques in
general must consider (Wiggerts, 1997):

– Representation: The entities and relationships to
be clustered

– Similarity: The degree of similarity between the
software entities

– Algorithms: Algorithms that use the similarity
measurement to make clustering decisions

Representation

• There are many choices based on the desired
granularity of recovered system design

– Entities may be variables/procedures or
modules/classes.

– What types of relationships will be considered?

– Will the relationships be weighted?

Representation Examples

• MDG (Bunch – Mancoridis, Mitchell, et. al.)
– Directed graph, edges are weighted based on the

number of dependencies between the nodes

• Resource Flow Graph – RFG (Choi and Scacchi)
– Directed graph, edges represent resources provided to

a node from another node

• Resource Flow Graph – RFG (Müller, et. al.)
– Directed graph, edges are labeled with the actual set of

resource names that are exchanged between the
nodes (modules)

• Hutchens & Basili
– Dissimilarity matrix formed from data bindings.

Similarity

• Similarity measurements are used to determine the
degree of “similarity” between a pair of entities

• Different types:
– Association coefficients: Based on common features that

exist (or do not exist) between a pair of entities
• Most common type of similarity measurement

– Distance measures: Measure of the degree of dissimilarity
between entities.

Example Similarity Measurement

Classical similarity measurements:

E
n

ti
ty

 i

Entity j

1

0

1 0

a

c

b

d

a: Number of common features in entity i and entity j
b: Number of features unique to entity j
c: Number of features unique to entity i
d: Number of features absent in both entity i and entity j

cba

a
jiJaccard

dcba

da
jisimple







),(and),(

Antquetil et. al. (1999) compared the Simple and Jaccard

algorithms and found that overall the Jacacard algorithm

produced better results.

Hutchens & Basili (1985)
Data Bindings

• Useful for clustering procedures and variables
into modules.

• Uses hierarchical clustering algorithms to form
clusters from the data bindings.

• Addressed several aspects of clustering
– Use of hierarchies, stability (also examined by Tzerpos

and Holt), consistency between a clustered view and a
designers view (Anquetil et. al.).

A data binding classifies the similarity between two

procedures based on the common variables that are

within the static scope of the two procedures.

Schwanke (1991)
Machine Learning

• Arch is a semi-automatic clustering technique
that is based on using machine learning to
maximize cohesion and minimize coupling
between software components.

• Maverick analysis is a unique feature of Arch
where misplaced procedures are relocated to
more appropriate modules.
– Maverick procedures share many features with

procedures in other modules.

Schwanke (1991)
Arch Algorithm

Place each entity into a subsystem by itself

Repeat

 Identify the two most similar entities

 Combine them into a common subsystem

Until the results are “satisfactory”

Lindig & Snelting (1997)
Mathematical Concept Analysis

• Used for clustering procedures and
variables into modules.

• A concept is defined as C=(P,V)
– Given a set of variables, V, P = cp(V) is a set of

common procedures

– Given a set of procedures, P, V=cv(P) is a set of
common variables

• A context can be represented as a lattice.

• Lattice can be transformed into a “tree-like”
structure to form the modules.

Lindig & Snelting (1997)
Mathematical Concept Analysis

V1 V2 V3 V4 V5 V6 V7 V8

P1 X X

P2 X X X

P3 X X X X X

P4 X X X X X X

V1 V2 V3 V4 V5 V6 V7 V8

P1 X X

P2 X X X

P3 X X X X X

P4 X X X X X

V1,V2
P1

V5
P2

V3,V4

V6,V7,V8
P3

P4

V1,V2
P1

V5
P2

V3,V4

V6,V7,V8
P3,P4

Have P2 Pass V5 to P4

Müller et. al. (1992)
The Rigi Tool

• Building block of cluster is a subsystem not a
module.

• Rigi – a semiautomatic clustering tool

– Clustering based on heuristics such as measuring the
relative strength between subsystems
• Interconnection Strength (IS) measurement

• Other interesting research aspects:

– Omnipresent modules

– Use of module and directory names to make clustering
decisions (further researched by Anquetil et. al.)

Müller et. al. (1992)
Rigi Algorithm

For each pair of entities

 measure the Interconnection Strength (IS).

If the IS value exceeds a user-defined threshold

then

 place the entities into a common subsystem

Choi & Scacchi (1990) Automatic
Clustering

• Goal is to automatically restructure (cluster)
legacy systems.

• Build resource flow graph (RFG)
– Nodes are modules.

– An edge is placed from node A to node B if
module A provides one or more resources to
module B.

• Clustering approach is based on partitioning
the RFG by finding articulation points in the
graph.

Montes de Oca & Carver (1994)
Data Mining Clustering

• Apply data mining techniques that have been
developed for databases to software clustering

• Data mining can find non-trivial relationships between
elements in a database.
– Software Clustering can find non-obvious relationships

between source code components.

• Data mining can find interesting relationships in
databases without upfront knowledge of the objects
being studied
– Developers who want to cluster are typically not familiar

with the structure of the system.

Montes de Oca & Carver (1994)
Data Mining Clustering

• Data mining techniques are designed to
work with a large amount of information
efficiently
– Most clustering tools are very slow because of

the complexity of the software clustering
problem.

Mancoridis, Mitchell et. al. (1998)
Optimization-based Clustering

• Automatic clustering technique is implemented as
a Java tool called Bunch.

• Bunch is fully automatic, but can exploit designer
knowledge when it is available.

• Partitions a Module Dependency Graph into a
subsystem hierarchy.

• Like Arch, Bunch attempts to maximize cohesion
and minimize coupling.

“Treat automatic clustering as an

optimization problem”

Mancoridis, Mitchell et. al. (1998)
Bunch Algorithm

Create the MDG from the source code structure and

generate a random set of partitions of the MDG

(the population)

For each p in the population, Repeat:

 Let partition p’ = p

 Let q be a partition found by applying one of our

 clustering algorithms to p

 if MQ(q) > MQ(p), let p = q

Until MQ(p’) = MQ(q)

Return p

Anquetil, Lethbridge, et al (1999)
Comparing Clustering Algorithms
• Anquetil, Fourrier & Lethbridge’s compare

various hierarchical clustering algorithms

• Work investigated classical clustering
algorithms and similarity measurements.

– Simple versus Jaccard

• This research defined 3 metrics that can be
used to compare different clustering
approaches.

Anquetil, Lethbridge, et al (1999)
Metrics

• Precision – agreement between the clustering
method and the expert.

• Recall – agreement between the expert and
the clustering method.

• Goal: High precision and recall, but their
experimental results indicate that the classical
clustering methods tend to have good
precision, but poor recall.

Tzerpos & Holt (1999)
Distance Between Partitions

• Mojo is a distance metric that measures the
“similarity” between two different partitions
of the same system:

– Good for comparing results between different
clustering techniques.

– Good for validating results with an expert.

– Good for stability analysis (structural drift over
time).

Tzerpos & Holt (1999)
Mojo Metric

• Given 2 partitions of the same system the goal is
to measure the effort to transform the first
partition into the other. Based on move and join
operations

– Move: move a resource from one cluster to another

– Join: merge two clusters into a single cluster

mno(A,B) = The number of move and join operations to

 transform A into B

MoJo(A,B) = min(mno(A,B),mno(B,A))

Anquetil & Lethbrige (1999)
Using Names of Source Files

• Anquetil and Lethbridge did research on using
the names of source files to determine
similarity.

• Technique includes dictionary lookup and
substring analysis.

• Using file names produced good results for
the systems that were studied.

Mitchell & Mancoridis (2001)

• Developed improved metrics to measure the
similarity of two partitions:

– A distance metric called MeCl

– A similarity metric called EdgeSim

– A framework for comparing clustering algorithms
called CRAFT.

• More details will follow …

