
Clustering Software Systems to Identify 
Subsystem Structures 



Understanding the Structure of Programs is 
Difficult 

• Developers create sophisticated applications 
that are complex and involve a large number 
of interconnected components. 

• Result: Program understanding is difficult 

• Goal: Use automated techniques to help 
developers understand the structure of 
software systems. 



Common Problems 

• Creating a good mental model of the structure of a 
complex system. 

• Keeping a mental model consistent with changes that 
occur as the system evolves. 

• These problems are exacerbated by: 

– non-existent or inconsistent design documentation 

– high rate of turnover among IT professionals 

• Assumption: Understanding the structure of a 
systems software is valuable for maintainers. 



Solutions 

• Automatic: Use software clustering 
techniques to decompose the structure of 
software systems into meaningful 
subsystems. 

– Subsystems help developers navigate through 
the numerous software components and their 
interconnections. 

• Manual: Use notations such as UML to 
specify the software structure. 



A Software Clustering Primer 

• Directed graphs are commonly used to represent 
the structure of software. 

• Assume that this graph consists of a finite set of 
components (nodes): 

– classes, modules, files, packages, etc. 

• and relationships (edges) between components: 

– inherit, import, include, call, instantiate, etc. 

• Problem:  How do we partition the nodes of the 
graph into clusters (subsystems)? 



Software Clustering Challenges 

• There are many ways to partition a graph into 
clusters. 

• How do we create efficient algorithms to find 
partitions of the graph that are representative 
of a system’s structure? 

• How do we distinguish between “good” 
partitions, and “bad” partitions? 



How Hard is this Problem? 

If every partition of the graph is considered, the number 

of partitions that will need to be investigated is: 
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The above recurrence equation grows exponentially with 

respect to the number of nodes (n) in the graph  

(each partition 1kn clusters).   

Sn,k for some values of n: 

1=1; 5=52; 10=115,975; 15=1,382,958,545;  

20=51,724,158,235,372 



Some Solutions 

• Enumerating every possible partition of the 
software structure graph is not practical. 

• Heuristics can be used to reduce the number 
of partitions:  
– Searching algorithms 
– Knowledge about the source code 

• Names (files, directories, method/procedure) 
• Designer input, design documentation 

– Remove entities that provide little structural value  
• libraries 

• Result are sub-optimal, but are often 
adequate. 



Why is  
Software Clustering Useful? 

• Helps new developers create a mental model 
of the software structure. 

• Especially useful in the absence of experts or 
accurate design documentation. 

• Helps developers understand the structure of 
legacy software. 

• Enables developers to compare the 
documented structure with the automatically 
created (actual) structure. 



Example: Clustering Simplifies Program 
Structure Understanding 
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Modern Relevance of 
Software Clustering 

• Clustering has been studied for many years in 
the fields of mathematics, science and 
engineering. 

• Clustering research in software engineering 
increased because of Y2K and the ‘webifying’ 
of legacy systems. 

• New clustering approaches have been 
developed, and classical clustering techniques 
have been modified to work with software 
structures. 
 



Creating Clusters at Design Time 

• Parnas (1972) – Information Hiding 
– Hide program “secrets” behind interfaces 

– A manual form of clustering 

• Object Oriented Design (Booch, 1994) 
– Objects group (cluster) related data and 

operations that act upon the data. 

– Booch suggests principles that are commonly 
used in clustering research: 
• Abstraction 

• Encapsulation 

• Hierarchies & Modularity 



Classification of  
Software Clustering Research 

• Clustering Procedures/Functions into Modules 
– Hutchens & Basili, Schwanke, Lindig & Snelting, Montes de 

Oca & Carver   

• Clustering Modules/Classes into Subsystems 
– Müller et. al., Mancoridis, Mitchell et. al., Anqetil, Fourrier 

& Lethbridge, Choi & Scacchi  

• Measuring Differences between Clustered Systems, 
Incremental Maintenance & 
Metrics/Measurements 
– Murphy, Tzerpos & Holt, Mitchell & Mancoridis, Anquetil, 

Fourrier & Lethbridge 



Clustering Techniques 

• There are many different clustering 
techniques, but clustering techniques in 
general must consider (Wiggerts, 1997): 

– Representation: The entities and relationships to 
be clustered 

– Similarity:  The degree of similarity between the 
software entities 

– Algorithms:  Algorithms that use the similarity 
measurement to make clustering decisions 



Representation 

• There are many choices based on the desired 
granularity of recovered system design 

– Entities may be variables/procedures or 
modules/classes. 

– What types of relationships will be considered? 

– Will the relationships be weighted? 



Representation Examples 

• MDG (Bunch – Mancoridis, Mitchell, et. al.) 
– Directed graph, edges are weighted based on the 

number of dependencies between the nodes 

• Resource Flow Graph – RFG (Choi and Scacchi) 
– Directed graph, edges represent resources provided to 

a node from another node 

•  Resource Flow Graph – RFG (Müller, et. al.) 
– Directed graph, edges are labeled with the actual set of 

resource names that are exchanged between the 
nodes (modules) 

• Hutchens & Basili 
– Dissimilarity matrix formed from data bindings. 



Similarity 

• Similarity measurements are used to determine the 
degree of “similarity” between a pair of entities 

• Different types: 
– Association coefficients:  Based on common features that 

exist (or do not exist) between a pair of entities 
• Most common type of similarity measurement 

– Distance measures: Measure of the degree of dissimilarity 
between entities. 



Example Similarity Measurement 

Classical similarity measurements: 
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Antquetil et. al. (1999) compared the Simple and Jaccard 

algorithms and found that overall the Jacacard algorithm 

produced better results. 



Hutchens & Basili (1985) 
Data Bindings 

• Useful for clustering procedures and variables 
into modules. 

• Uses hierarchical clustering algorithms to form 
clusters from the data bindings. 

• Addressed several aspects of clustering 
– Use of hierarchies, stability (also examined by Tzerpos 

and Holt), consistency between a clustered view and a 
designers view (Anquetil et. al.).  

A data binding classifies the similarity between two 

procedures based on the common variables that are 

within the static scope of the two procedures.  



Schwanke (1991) 
Machine Learning 

• Arch is a semi-automatic clustering technique 
that is based on using machine learning to 
maximize cohesion and minimize coupling 
between software components. 

• Maverick analysis is a unique feature of Arch 
where misplaced procedures are relocated to 
more appropriate modules. 
– Maverick procedures share many features with 

procedures in other modules. 



Schwanke (1991) 
Arch Algorithm 

Place each entity into a subsystem by itself 

Repeat 

 Identify the two most similar entities 

 Combine them into a common subsystem 

Until the results are “satisfactory” 



Lindig & Snelting (1997) 
Mathematical Concept Analysis  

• Used for clustering procedures and 
variables into modules. 

• A concept is defined as C=(P,V)  
– Given a set of variables, V, P = cp(V) is a set of 

common procedures 

– Given a set of procedures, P, V=cv(P) is a set of 
common variables 

• A context can be represented as a lattice. 

• Lattice can be transformed into a “tree-like” 
structure to form the modules.  



Lindig & Snelting (1997) 
Mathematical Concept Analysis 
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Müller et. al. (1992) 
The Rigi Tool 

• Building block of cluster is a subsystem not a 
module. 

• Rigi – a semiautomatic clustering tool 

– Clustering based on heuristics such as measuring the 
relative strength between subsystems 
• Interconnection Strength (IS) measurement 

• Other interesting research aspects: 

– Omnipresent modules 

– Use of module and directory names to make clustering 
decisions (further researched by Anquetil et. al.) 



Müller et. al. (1992) 
Rigi Algorithm 

For each pair of entities 

 measure the Interconnection Strength (IS). 

 

If the IS value exceeds a user-defined threshold 

then  

 place the entities into a common subsystem 



Choi & Scacchi (1990) Automatic 
Clustering  

• Goal is to automatically restructure (cluster) 
legacy systems. 

• Build resource flow graph (RFG) 
– Nodes are modules. 

– An edge is placed from node A to node B if 
module A provides one or more resources to 
module B. 

• Clustering approach is based on partitioning 
the RFG by finding articulation points in the 
graph. 



Montes de Oca & Carver (1994)  
Data Mining Clustering  

• Apply data mining techniques that have been 
developed for databases to software clustering 

• Data mining can find non-trivial relationships between 
elements in a database. 
– Software Clustering can find non-obvious relationships 

between source code components. 

• Data mining can find interesting relationships in 
databases without upfront knowledge of the objects 
being studied 
– Developers who want to cluster are typically not familiar 

with the structure of the system. 



Montes de Oca & Carver (1994)  
Data Mining Clustering  

• Data mining techniques are designed to 
work with a large amount of information 
efficiently 
– Most clustering tools are very slow because of 

the complexity of the software clustering 
problem. 



Mancoridis, Mitchell et. al. (1998) 
Optimization-based Clustering 

• Automatic clustering technique is implemented as 
a Java tool called Bunch. 

• Bunch is fully automatic, but can exploit designer 
knowledge when it is available. 

• Partitions a Module Dependency Graph into a 
subsystem hierarchy. 

• Like Arch, Bunch attempts to maximize cohesion 
and minimize coupling. 

“Treat automatic clustering as an  

optimization problem” 



Mancoridis, Mitchell et. al. (1998) 
Bunch Algorithm 

Create the MDG from the source code structure and 

generate a random set of partitions of the MDG 

(the population) 

For each p in the population, Repeat: 

 Let partition p’ = p 

 Let q be a partition found by applying one of our 

 clustering algorithms to p 

 if MQ(q) > MQ(p), let p = q 

Until MQ(p’) = MQ(q) 

Return p 



Anquetil, Lethbridge, et al (1999)  
Comparing Clustering Algorithms 
• Anquetil, Fourrier & Lethbridge’s compare 

various hierarchical clustering algorithms 

• Work investigated classical clustering 
algorithms and similarity measurements. 

– Simple versus Jaccard 

• This research defined 3 metrics that can be 
used to compare different clustering 
approaches. 



Anquetil, Lethbridge, et al (1999)  
Metrics 

• Precision – agreement between the clustering 
method and the expert. 

• Recall – agreement between the expert and 
the clustering method. 

• Goal:  High precision and recall, but their 
experimental results indicate that the classical 
clustering methods tend to have good 
precision, but poor recall. 



Tzerpos & Holt (1999) 
Distance Between Partitions 

• Mojo is a distance metric that measures the 
“similarity” between two different partitions 
of the same system: 

– Good for comparing results between different 
clustering techniques. 

– Good for validating results with an expert. 

– Good for stability analysis (structural drift over 
time). 



Tzerpos & Holt (1999) 
Mojo Metric 

• Given 2 partitions of the same system the goal is 
to measure the effort to transform the first 
partition into the other.  Based on move and join 
operations 

– Move: move a resource from one cluster to another 

– Join: merge two clusters into a single cluster  

mno(A,B) = The number of move and join operations to 

                     transform A into B 

MoJo(A,B) = min(mno(A,B),mno(B,A)) 



Anquetil & Lethbrige (1999) 
Using Names of Source Files 

• Anquetil and Lethbridge did research on using 
the names of source files to determine 
similarity. 

• Technique includes dictionary lookup and 
substring analysis. 

• Using file names produced good results for 
the systems that were studied. 



Mitchell & Mancoridis (2001) 

• Developed improved metrics to measure the 
similarity of two partitions: 

– A distance metric called MeCl 

– A similarity metric called EdgeSim 

– A framework for comparing clustering algorithms 
called CRAFT. 

• More details will follow … 


